Package: ImputeLongiCovs 0.1.0

ImputeLongiCovs: Longitudinal Imputation of Categorical Variables via a Joint Transition Model

Imputation of longitudinal categorical covariates. We use a methodological framework which ensures that the plausibility of transitions is preserved, overfitting and colinearity issues are resolved, and confounders can be utilized. See Mamouris (2023) <doi:10.1002/sim.9919> for an overview.

Authors:Pavlos Mamouris [aut, cre], Vahid Nassiri [aut, ctb], Geert Molenberghs [ctb], Geert Verbeke [ctb]

ImputeLongiCovs_0.1.0.tar.gz
ImputeLongiCovs_0.1.0.zip(r-4.5)ImputeLongiCovs_0.1.0.zip(r-4.4)ImputeLongiCovs_0.1.0.zip(r-4.3)
ImputeLongiCovs_0.1.0.tgz(r-4.4-any)ImputeLongiCovs_0.1.0.tgz(r-4.3-any)
ImputeLongiCovs_0.1.0.tar.gz(r-4.5-noble)ImputeLongiCovs_0.1.0.tar.gz(r-4.4-noble)
ImputeLongiCovs_0.1.0.tgz(r-4.4-emscripten)ImputeLongiCovs_0.1.0.tgz(r-4.3-emscripten)
ImputeLongiCovs.pdf |ImputeLongiCovs.html
ImputeLongiCovs/json (API)

# Install 'ImputeLongiCovs' in R:
install.packages('ImputeLongiCovs', repos = c('https://pmamouris.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • analyses_data - Analyses Data for imputing categorical covariates
  • initial_data - Initial Data for imputing categorical covariates

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 2 scripts 169 downloads 2 exports 1 dependencies

Last updated 1 years agofrom:be25a6c63e. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winNOTENov 22 2024
R-4.5-linuxNOTENov 22 2024
R-4.4-winNOTENov 22 2024
R-4.4-macNOTENov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:create_probMatriximpute_categorical_covariates

Dependencies:nnet

Impute longitudinal categorical covariates in R using the ImputeLongiCovs package

Rendered fromvignette_theory.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2023-10-06
Started: 2023-10-06